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Problems of shock propagation with energy liberation by one point explosion in a gas 
were investigated in sufficient detail [1-3]. In examining two explosions [4], which can 
occur at different points of space and be initiated at a different time in the general case, 
a number of new dimensionless parameters appears which can, be varied and thus substantially 
alter the nature of the nonlinear shock interaction and the one or more resultant disconti- 
nuities being formed. One limit case of such a problem is the explosion of a charge above 
a plane surface (which isequivalent to the simultaneous explosion of two identical charges 
separated by a distance equal to twice the height above the surface), and it has been studied 
theoretically and experimentally by many authors [5-7]. The parameter on which the solution 
of this problem depends is the dimensionless height of the charge. In this paper another 
limit case is examined, that of the problem of a double explosion when the point explosions 
occur at the same point of space but at different times. The solution will then depend on 
two control parameters, the energy ratio l ~ o o = E2/E, for the first and second explosions, 
respectively, and the delay time between the explosions to, where the case E~ + E~ = const 
is of special interest. 

i. Formulation of the problem is analogous to that considered earlier by the authors 
[8], however, with the substantial distinction that now counterpressure Po by the medium 
ahead of the first shock is taken into account. We consider the first point explosion to 
occur at the time t =--to at the point r = 0 and the second to occur at the time t = 0 at 
the same point of space. The density of the unperturbed gas 0o, the viscosity, and the heat 
conduction are not taken into account. The gas flow behind the discontinuities is adiabatic, 
subject to the equation of state of a perfect gas e = P/(y--1)p (~ is the specific internal 
energy) with the adiabatic index ~ = 1.4. 

Taken as time and distance scales are ~0= rO/(po/po)y~ ro= (E~/p~o)li ~ where ao is the 
self-similar constant, and plane (~ = i) or spherical (~ = 3) synunetry is considered. We 
introduce the dimensionless variables t = t't~ = r'rC, 9 = P'P0, P = P'P0, u = v'r~ ~ . The delay 
time is t~ = to/t ~ . The dimensionless quantities are here denoted by a prime, which we 
later omit by considering that we deal just with dimensionless quantities. As to ~ 0 the 
solution of the problem of a double explosion goes over into the solution of a problem of 
one explosion with the energy E~ + E~. 

The initial system of gas dynamics equations was solved numerically by the S. K. Godunov 
method in an implicit difference scheme with a subsequent conversion based in the integral 
conservation laws [9] with extraction of the flow singularities. Two shocks following each 
other and a high entropy zone at the center of the explosions are formed in a double point 
explosion. Hence, the high-entropy zone at the center as well and the first and second 
shock discontinuities were extracted in the computation until they merged, and after the mer- 
ger, the front of the resultant shock was extracted. Provided in the program was a change 
in the number of cells in the two computation domains as the flow evolved and the dimensions 
of these domains changed. The initial conditions for the first explosion were given by the 
numerical solution of the self-similar problem of a strong explosion [i] and for the second 
explosion from the solution of the linearized problem [8] for pressures on the order of 
150-200 on the fronts. The accuracy of the computations was checked by the mass and energy 
conservation laws, where the error did not exceed 0.6% for the spherical case and 2-3% for 
the plane case. 

2. Results of the numerical solution are represented in Figs. 1-4. As the parameters 
to and %o change, the nature of the wave interaction changes. The dependence of P,, the am- 
plitude of the second shock, is shown in Fig. i for spherical symmetry and %o = I, and after 
merger, the amplitude of the resultant shock, as a function of the distance to the center 
of the explosions. The curves 1-3 correspond to the delay to = 0.02, 0.08, 0.12; curve 4 
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to the amplitude of the pressure during the explosion of one charge with energy 2E~ (to = 0). 
It is seen that after the merger of the discontinuities of the double explosion (the distance 
of the merger can be determined from Fig. 2), the amplitude of the resultant wave rapidly 
emerges on the asymptotic of the single explosion of energy 2E~. Computations show that the 
impulse of the positive excess pressure phase also possesses an analogous property. 

An important characteristic for the one-dimensional shocks being propagated is the distance 
for merger of their discontinuity fronts ~ ~ r{k~ however, in a number of cases the C+-charac- 
teristic or the shock discontinuity cannot overtake the shock front preceding them. This occurs with 
the characteristic it turns out to be in the negative phase of the shock since, as is known, 
the point of transition from the positive to the negative phase at large distances from the 
site of the explosion can be a limit characteristic: AllC+-characteristics in the negative 
phase do not intersect it, no matter how long prolonged. The dependence of the distance 
for the shock fronts to merge on the delay time to for a double explosion with 1 ~ = i is 
displayed in Fig. 2 for plane (curve i) and spherical (curve 2) symmetry. In the plane case 
the second shock always overtakes the first; it is seen in the figure that in this case the 
distance to merger r c grows monotonically in the time range to under consideration. For 
spherical symmetry, the dependence r~(to) has an inflection, then rising abruptly the merger 
distance tends to infinity for finite to: The second shock discontinuity cannot overtake 

the first. 

The evolution of shocks for the case when the second discontinuity does not overtake 
the first, shown in Fig. 3, is typical. Figure 3 is constructed for values k~ t0=0.4, 
of the double explosion parameters; the running coordinate z = r--~ is laid off along 

the abscissa axis, and the excess pressure ~P = P--1 along the ordinate. The configura- 
tion 1 corresponds to the time t = 0.667, starting with t = 1.4 (configuration 2), the 
velocity of the second discontinuity becomes less than the speed of sound in a certain La- 
grange particle at the time of going over from the positive to the negative phase, and conse- 
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quen~ly, the duration of the negative phase of the first wave starts to grow. In a certain 
time interval the flow between the discontinuities recalls an N-wave profile (configuration 
3 corresponds to t ~ 5.76), Involving the theory of the second approximation in nonlinear 
accoustics [10] in the consideration, it is easy to see that further wave evolution at con- 
siderable distance will result in the amplitude of the second discontinuity in Fig. 3 be- 
comin E less than zero| the negative phases of both waves merge and one shock is formed with 
a jump of the gasdynamic quantities in the negative phase. 

It is perfectly evident that for sufficiently large A ~ (E~ > E~), the merger distance 
will be finite for arbitrary but finite to. Hence, for the case of spherical explosions 
critical values of the parameters k~ and (to), can be extracted which will define the domain 
to>(t0),. Z~ depends on thek ~ to plane ((to)* depends onA~ yieldin8 those values of the 
parameters to and ~u for which the second discontinuity cannot overtake the first. 

The existence of a critical delay time (to), is due to interaction of the second dis- 
continuity with the rarefaction phase of the first wave; thus, for the delays to ~'~.0.12 the 
negative excess pressure phase, and for the delays to•0.25, the negative velocity phase 
succeed in appearing prior to initiation of the second explosion; consequently, for such to 
the second shock discontinuity is propagated a certain distance in the rarefaction phase, 
which causes its additionalattenuation. The distance of second discontinuity interaction 
with the rarefaction phases can be determined from the intersection of the curves At(r) with 
tp(r) and tu(r) in Fig. 4, which is constructed for A ~ = 1 and ~ = 3. The At(r) in Fig. 4 
i~ the time interval between the arrival of the first and second discontinuities at a given 
Euler coordinate r, and tp and t u are the durations of the positive excess pressure and ve- 
locity phases of the first shock, respectively. The subscripts I, 2, 3, 4 of At correspond 
to the delay times t0 = At(0) = 0.~4;0.20;0.22;0.80. In ~hree of the four cases displayed in 
Fig. 4, the second wave interacts just with the negative excess pressure phase; hence, the 
curve At reaches the curve t o sufficiently rapidly. In the case to = 0.30 the second wave 
is propagated over the negative excess pressure and velocity phases, and in this case the 
attenuation of the second discontinuity is substantial, the curves ~t~, t u in Fi~. 4 are 
almost parallel, and they intersect only at the distance r~10. Starting from the second 
approximation of nonlinear acoustics, it can be shown that the impossibility of the second 
discontinuity overtaking the first in a weak shock wave asymptotic is related to the non- 
positivity of the total impulse (or area) of the negative phase of the first wave and the 
positive phase of the second wave at distances where this approximation is applicable (in 
Fig. 3, for instance). 

It is seen from Fig. 4 that the shock discontinuities in a certain range of distances 
(we denote it by Ar) are capable, starting with a distance r k (r k = 0.5 in Fig. 4), of form- 
ing a stable configuration of discontinuities, i.e., a configuration in which the time in- 
terval between discontinuities At remians constant (we denote it by Y = Y (t0,~~ and that 
for the delay ta = 0.80 ~r_~0.2 and T = 0.268, for to = 0.2 Ar~l.0 and T = 0.155, etc. 
The formation of a stable configuration is here manifest regardless of whether the first 
overtakes the second discontinuity on the asymptotic or not. Let us emphasize that in the 
evolution of a stable configuration of discontinuities, the profile behind the discontinuities 
changes while the duration of the time interval between the discontinuities remains constant. 
The condition for constancy of T in Ar is that the velocities of the discontinuities be equal 
st every point Ar, and this requires, in turn, that the amplitude and profile of the second 
shock be matched completely uniquely with the amplitude and profile of the first wave at the 
point r k, starting with which the stable configuration of discontinuities is observed. It 
is sufficiently interesting that the second wave "readjusts" under the first wave during 
evolution from r = 0 to r = r k in a sufficiently broad delay range to, in such a way that 
this becomes possible. 

By increasing to considerably, independent wave propagation can be achieved for a double 
explosion in at least a certain range of distances; hence, for %0 ~ 1 a stable configuration 
of discontinuities can generally be obtained with an arbitrarily large time interval T - to. 
In contradiction to this, a diminution of to does not imply a proportionate diminution in T; 
for a given %o it is impossible to obtain a Stable configuration with an arbitrarily small 
dimensionless time T (the dimensional time interval can be made arbitrary by selecting E~, 
Po, po in the necessary manner), which is due to the nature of second wave interaction with 
the compression and rarefaction phases behind the first shock. For ~o = i, v = 3 the minimal 
value of the duration T = 0.9 corresponds to the delay to a 0.14, and the excess pressure on 
the discontinuities does not exceed -1.7 at the point r = r k. The approximation of nonlinear 
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acoustics is already applicable to velocities of wave discontinuities with such amplitudes. 
In this approximation the condition that the velocities of the d~scontinuities of both waves 
be equal is written if the form v~ ~ = v~}+ u-,'~) where v~ ) is the velocity behind the first 
discontinuity, v~ ) is the velocity behind the second discontinuity, and v~ ) is the velocity 
ahead of the second discontinuity. 

3. Let us consider the possibility of the formation of a stable configuration of dis- 
continuities with arbitrary profiles by starting from the nonlinear acoustics approximation 
(the theory of the second approximation). In this approximation the wave propagation and 
interaction along a selected characteristic direction without taking account of dissipation 
and dispersion processes is described by the solution for Riemann waves in a second approxi- 
mation [I0]. Hence, if the profile at r = r k is considered as initial, the values of the 
velocities and the amplitude of the discontinuity at the distances r > r k can be set in a 
one-to-one correspondence with a continuous series of points on the profile behind and ahead 
of the discontinuity. This is seen from the Riemann solution in the second approximation 
for both shock discontinuities [I0]: 

= 0 ,  - -  + <3. l) 

For  t h e  s p h e r i c a l  g e o m e t r y  t h e  n o t a t i o n  ha s  t h e  form u = vr/r., z = [(? + i)/2y]r~ln (r/r~), ~ = t - -  

( r -  rK)/~, ~p a r e  c o o r d i n a t e s  o f  t h e  d i s c o n t i n u i t i e s .  The t i m e  r e f e r e n c e  i s  s e l e c t e d  so 
t h a t  t = 0 c o r r e s p o n d s  to  t h e  a r r i v a l  o f  t h e  f i r s t  d i s c o n t i n u i t y  a t  t h e  p o i n t  r = r k ( z  = 0 ) .  
We a l s o  assume t h a t  t h e  c h a r a c t e r i s t i c  w a v e l e n g t h  i s  l < < r , .  The f u n c t i o n s  r  and  ~2 e x -  
p r e s s  t h e  i n i t i a l  p r o f i l e s  of  t he  f i r s t  and s e c o n d  s h o c k s  a t  z = 0 :  

u = O, ~ < 0 ;  u = C~,(~), 0~< % <  T; u = cI)z(~), ( 3 . 2 )  

~(*~--0 and of  t h e  s e c o n d  i s  ~cv~) The initial coordinate of the first discontinuity is {;. -- , = T. 

Therefore, the possibility of the propagation of a stable configuration of discontinu- 
ities on the segment Ar is associated with the consistency of the initial (r = r k) wave pro- 
files (3.2) on sections adjoining the discontinuities up to points of the profiles corre- 
sponding to the distance r ,  -~ Ar. 

Le t  ~ = ]l(u) and  ~ = ]~(u) be f u n c t i o n s  i n v e r s e  to  r  and r  We c o n s i d e r  t h e  p r o f i l e  
f , ( u )  g i v e n .  Then f rom t h e  c o n d i t i o n  of  c o n s t a n c y  of  t h e  t i m e  i n t e r v a l  b e t w e e n  d i s c o n t i n u -  
i t i e s  ~ ~ - -  T ( e q u a l i t y  o f  t h e  v e l o c i t i e s  of  t h e  d i s c o n t i n u i t i e s )  we o b t a i n  a s y s t e m  of  - - ~ p  --: 

e q u a t i o n s  f rom ( 3 . 1 )  and ( 3 . 2 )  t h a t  d e t e r m i n e  t h e  s e c o n d  wave p r o f i l e  f ~ ( u )  s u c h  t h a t  f o r  
z > 0 a s t a b l e  c o n f i g u r a t i o n  o f  d i s c o n t i n u i t i e s  would  be formed w i t h  t h e  t ime  i n t e r v a l  T: 

/.,(u~.) = ft(u: -- u2) + (2u., -- ul)z, /':(u: -- u~) = ll(Ul) -- u:z + T, 
(3.3) 

~L (ul) = ~ [ P/, (P) dp, T >f/L (u /2)  - -  fi (u,), 02 (T) = O1 (0) - -  O, (T). 

For a linear or concave profile r of the first wave (~i(~)~ 0 and ~J,(%)<0 for % ~ (0, T)) 
displayed in Fig. 5, second wave profiles are shown schematically that have been obtained 
as the solution of the system (3.3) with different T. At the point ~ = T the initial second 
wave profile can be both convex and concave, depending on the specific function %~ (~), but 
the first derivative r remains less than zero. The solution for the profile ~2 (~) has 
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a characteristic ambiguity. Only the upper part of the profile ~2(T)~(~)>um (u m is 
defined as the maximum point of the function f2(u), f~(u m) = 0) corresponds to the real wave 
process, and to eliminate the ambiguity it is necessary to replace the lower part of the 
profile ]~(um)<~<oo so that the funclton r would be defined uniquely at every point 

> T (the lower section of the profile satisfying the single-valuedness nonditlon is shown 
in Fig. 5 by dashes). The sec=ionof the profile ~=(T)>1~2(~)~um for given fl and T cor- 
responds to the maximum distance Az at which the waves wlll be propagated with constant dura- 
tion between the fronts T; Az = Az(um, T) is found from the solution of (3.3). In the gen- 
eral case the solution of (3,3) can only be found numerically. For the case of a linear 
first wave profile ~I(~) I--~/~ , the solution is written in the form 

f2(~) = a(i - ~) -- = ]/ T/=~ + 2T, ~ < u < c~(T) = T/a, 

= VT,=J , A , = ( 2 r  Vg)'i:-a, r > a / 2 .  

I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  t he  second  wave p r o f i l e  t u r n s  ou t  t o  be n o n l i n e a r .  Examina-  
t i o n  o f  t h e  p r o b l e m  w i t h i n  t h e  f r amework  o f  t h e  t h e o r y  o f  t h e  second  a p p r o x i m a t i o n  a f f o r d s  
t h e  p o s s i b i l i t y  o f  t h e  e x i s t e n c e  o f  weak s h o c k s  r and r c a p a b l e  o f  f o r m i n g  a s t a b l e  con -  
f i g u r a t i o n  o f  d i s c o n t i n u i t i e s ,  r e g a r d l e s s  o f  t h e  method o f  o b t a i n i n g  such  waves .  The c o n -  
s i s t e n c y  o f  t he  wave p r o f i l e s  f o r  t he  f o r m a t i o n  o f  s t a b l e  c o n f i g u r a t i o n s  depends  on t h e  
method o f  t h e i r  i n i t i a t i o n  and e v o l u t i o n  up to  t h e  p o i n t  r k .  For  t he  d o u b l e  e x p l o s i o n  c o n -  
s i d e r e d  h e r e  t he  d u r a t i o n  T and the  i n t e r v a l  hr. depend e x c l u s i v e l y  on xo and t o ,  and can  be 
o b t a i n e d  o n l y  b e c a u s e  o f  a n u m e r i c a l  s ~ l u t i o n  o f  t h e  p r o b l e m .  

LITERATURE CITED 

i. L. I. Sedov, Similarity and Dimensional Analysis Methods in Mechanics [in Russian], 
Nauka, Moscow (1977). 

2. V. P. Korobeinikov, Problems of the Theory of a Point Explosion on Gases [in Russian], 
Nauka, Moscow (1973). 

3. Kh. S. Kestenboim, G. S. Roslyakov, and L. A. Chudov, Point Explosion [in Russian], 
Nauka, Moscow (1974). 

4. V. P. Korobeinikov and L. V. Shldlovskaya, "Numerical solution of problems on an ex- 
plosion in a moving gas," Chislennye Metody Mekhaniki Sploshnoi Sredy, ~, No. 4, (1975). 

5. K. P. Stanyukovich, (ed.), Physics of Explosion [in Russian], Nauka, Moscow (1975). 
6. G. Broud, Analysis of Explosions by Computer [Russian translation], Mir, Moscow (1976). 
7. V. V. Podlubnyi and A. S. Fonarev, "Reflection of a spherical wave from a flat surface," 

Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6 (1974). 
8. E. I. Andrlankin and N. N. Myagkov, "A double explosion in a perfect gas," Prikl. Mekh. 

Tekh. Fiz., No. 4 (1981). 
9. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numeri- 

cal Solution of Multidimensional Problems of Gasdynamlcs [in Russian], Nauka, Moscow 
(1976). 

i0. O. V. Rudenko and S. I. Soluyan, Theoretical Principles of Nonlinear Acoustics [in 
Russian], Nauka, Moscow (1975). 

702 


